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In nonlinear ultrasonics, the correlation between microstructural change and ultrasonic properties is
investigated by the acoustic nonlinearity parameter, calculated by experimentally measuring the first
and second harmonic amplitudes of ultrasound signals. The most prevalent signal processing method
is to transform the time-domain signal into the frequency domain and acquire the amplitudes of each
frequency from the frequency spectrum. However, the major drawback of this approach is that temporal
information is not preserved and the transformation errors increase dramatically in analyzing nonlinear
signals with discontinuities. In this study, two wavelet-based algorithms are introduced to analyze the
waveform in nonlinear ultrasonic testing. The algorithms are applied to correlate the acoustic nonlinear-
ity parameter and the plastic deformation of aluminum 1100 specimens, for the purpose of validation.
The results showed that the acoustic nonlinearity parameter calculated through the proposed algorithms
is not influenced by the signal processing variables, and the signal processing error is reduced when the
wavelet-based decomposition is applied.

� 2017 Elsevier Ltd. All rights reserved.
.

1. Introduction

Ultrasonic testing (UT) is a well-established nondestructive
evaluation (NDE) method that measures the material state by
monitoring the propagation of high frequency elastic waves within
the material. The method has been developed in many applications
to detect the presence of various flaws (e.g., crack, corrosion,
delamination) in materials [1–3]. The requirement that the wave-
length of ultrasonic signal should be smaller than the size of
defects when the linear UT is implemented limits the capability
of assessing material conditions involving microstructural defects,
such as early stages of fatigue and creep damage. On the other
hand, on account of the advancement of UT instrumentation and
the theory of nonlinear wave propagation, the nonlinear character-
istics of the wave motion has been utilized to investigate
microstructural defects [4–7]. These methods commonly rely on
observing tiny changes of the elastic wave motion in the frequency
and/or time domain. Consequently, the error tolerance in the non-
linear UT methods, from both measurements and signal process-
ing, is more stringent than that in the linear UT counterparts.
This paper presents a novel wavelet-based technique aiming to
better extract frequency components in the nonlinear UT methods
and ultimately better assess the material state due to micro-
defects or damage.

Using ultrasonic testing, the material nonlinearity can be mea-
sured by two means: the stress-dependent ultrasonic wave speed
known as acoustoelasticity [8–11] and the detection of higher har-
monics [12–15]. The acoustoelastic effect is negligibly small when
the stress level is far below the yield point, which is beyond the
scope of this paper. When a single-frequency (i.e., the excitation
frequency) elastic wave propagates in a material, the interaction
of the single-frequency wave mode with microstructural defects
generates higher-frequency components called higher harmonics.
The excitation frequency is referred to in the literature as the fun-
damental wave frequency and the higher harmonics are integer
multiples of the excitation frequency. In linear ultrasonics, the
transmitting and receiving transducers are both tuned to the same
frequency; however, in nonlinear ultrasonics, the receiving trans-
ducer is tuned to the second or third harmonic frequency of the
transmitting transducer in order to detect the weak inherent phys-
ical nonlinearity due to the microstructural defects. Additionally,
in linear ultrasonics, the excitation signal is typically a pulse signal,
while a sinusoidal signal is selected in nonlinear ultrasonics in
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order to have a narrower bandwidth of frequency in the solution.
By monitoring the amplitudes of higher harmonics or mixing two
distinct incident wave frequencies to produce frequency side-
bands, the nonlinearity can be quantified and correlated with
material damage. The most common measurement of the nonlin-
earity is based on measuring the acoustic nonlinearity parameter

b, which is proportional to A2=A
2
1, the ratio of the second harmonic

amplitude A2 to the square of the first harmonic (fundamental fre-
quency) amplitude A1 [16,17]. The solution of the nonlinear wave
equation resulting from the summation of the first and second har-
monic waves is presented in Section 2. To date, there are several
applications of nonlinear ultrasonics to assess microstructural
changes in metallic alloys, such as fatigue damage [18,19], creep
damage [20–22], radiation damage [15], thermal aging [23,24],
and cold work [25]. Various wave types can be utilized for detect-
ing microstructural damage using nonlinear ultrasonics such as
longitudinal waves [22,26,27], Rayleigh waves [15,28,29], or Lamb
waves [19]. Matlack et al. have presented a comprehensive review
of the second harmonic generation method for detecting
microstructural damage [15].

To extract the amplitudes of the fundamental and second har-
monic frequencies, the most common signal processing method
is to transform the time-domain signal into the frequency domain
by FFT, and read the amplitude of each frequency from the fre-
quency spectrum [20,28,30,31]. The major drawbacks of this
approach are that temporal information is not preserved and that
the transformation is ineffective in dealing with truncated signals
or ones with discontinuity. Pruell et al. [19] applied the short time
Fourier transform (STFT) to obtain time-frequency images. How-
ever, STFT has a fixed window size and it cannot yield good resolu-
tion based on time and frequency simultaneously. Kim and Kim
[30] compared STFT and wavelet transformation (WT) and discov-
ered that theWT is a promising method to analyze the acoustic sig-
nals. In general, the acoustic nonlinearity parameter b rises with an
increase in the density of microscopic heterogeneities, e.g., disloca-
tion density, precipitates, or porosity. However, significant varia-
tions in the reported data and high errors in repeated
measurements require more robust signal processing tools to
decompose harmonic frequencies.

In this paper, we introduce a wavelet-based signal decomposi-
tion method to better extract higher harmonics from time history
signals and thus more accurately obtain the acoustic nonlinearity
parameter. The method in conjunction with nonlinear ultrasound
testing has broad applications in assessments of material state
due to micro-defects and damages [20–29]. For validation pur-
poses, we use the proposed method to determine the variation of
the acoustic nonlinearity parameter due to plastic deformation.
In order to reduce the complexities in the experiment due to
microstructure and the type of loading, a single-phase material,
aluminum 1100 strained under uniaxial loading, has been used.
The issue stemming from the contact condition of the ultrasound
transducer was first addressed to minimize experimental errors.
The fast Fourier transform (FFT) was also used to acquire the
acoustic nonlinearity parameter. The influences of the sampling
rate, frequency range, and the duration of the time-domain
response on the result of frequency spectrum were all examined.
The effectiveness of wavelet-based schemes was compared with
the FFT.

The organization of the paper is as follows. The relevant theory
of nonlinear wave propagation used in this study is reviewed in
Section 2. The signal processing techniques based on Fourier and
wavelet transforms for extracting harmonic signals are discussed
in Section 3. The preparation of specimens, experimental setting
and results are presented in Section 4. Discussions and conclusions
are presented in Section 5.
2. Review of nonlinear ultrasonics

The wave motion in solids is governed by the following
equation:

qDv
Dt

¼ r � r ð1Þ

where q is the material density, v is the particle velocity, D denotes
the material time derivative, and the body force is neglected. r is
the Cauchy stress tensor and can be obtained from the strain energy
density function by r ¼ J�1F @W

@E F
T , where F is the deformation gra-

dient and J ¼ detðFÞ. Under finite deformation, the general strain
energy density function has the following expression:

W ¼ 1
2!

CijklEijEkl þ 1
3!

GijklmnEijEklEmn þ . . . ð2Þ

where E is the Green strain tensor and C and G are the second- and
third-order elastic modulus tensors. Considering the longitudinal
wave, u, with a sinusoidal excitation uð0; tÞ ¼ u0 sinxt, the solution
of Eq. (1) is given as follows [32]:

uðx; tÞ ¼ u0 sinx t � x
cl

� �
þ b0

4
x
cl

� �2

u2
0x cos 2x t � x

cl

� �

þ b02

8
x
cl

� �4

u3
0x

2 sin 3x t � x
cl

� �
þ . . . ð3Þ

where cl is the propagation speed of longitudinal wave. Let A1 and
A2 be the fundamental and second harmonic amplitudes of the
above signal while converted to the frequency domain. The second
harmonic is induced by the material nonlinearity and the acoustic
nonlinearity parameter b can be quantified by the following
relationship:

b � A2

A2
1

¼ b0 xk
2

4
ð4Þ

where k ¼ x=cl is the wave number of the fundamental wave. Note
that the error of b is sensitive to the values of A1 and A2, considering
x and k are constant. The sensitivity analysis shows that the error of

the calculated b, A2�e
ðA1�eÞ2

, from Eq. (4) is in the order of O 2 e
A1
þ e

A2

� �
,

where e is the error from signal processing of A1 and A2. The error
of the calculated b is amplified when A2 is much smaller than A1,
which is typically the case as the amplitude of the second harmonic
frequency due to the microstructural damage is weak. Therefore, it
is imperative that the amplitudes of A1 and A2 for nonlinear UT
techniques be accurately measured and extracted.

3. Signal processing techniques for wave harmonics separation

In this section, the basic theories and equations of commonly
used methods for frequency decomposition, FFT and WT, are first
reviewed to illustrate their advantages and disadvantages in the
extraction of higher harmonics. Two proposed WT-based schemes
are then introduced for extracting frequency amplitudes for calcu-
lation of the acoustics nonlinearity parameter. The accuracy of the
proposed WT-based schemes is verified with an analytical solution
and the effectiveness is compared with that of the FFT-based signal
processing method.

3.1. Fast Fourier transform

FFT is the most commonly used signal processing tool to find
the frequency content of transient signals based on the Fourier ser-
ies expansion. The Fourier series of a time-dependent signal hðtÞ
within the limit of �T < t < T is:



1 For interpretation of color in Fig. 2, the reader is referred to the web version of
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hðtÞ ¼
X1
n¼�1

cne
ipn
T t ð5Þ

cn ¼ 1
2T

Z T

�T
hðtÞe�ipn

T tdt ð6Þ

where cn corresponds to the nth coefficient in the Fourier series. To
process a signal with finite discrete values, discrete Fourier trans-
form (DFT) is used. In DFT, the sequence hn with N values is trans-
formed to the frequency domain as:

Hk ¼
XN�1

n¼0

hne�i2pnk=N; k ¼ 0; . . . ;N � 1 ð7Þ

where k is the wave number and Hk is the corresponding sequence
in the frequency domain. Due to the large computational cost of cal-
culating DFT for large N, this method is seldom used. Instead, by
rearranging some multiplications and sums, a simple yet effective
algorithm called FFT is used which is an efficient method to com-
pute the Fourier transform. FFT decreases the computational cost
by reducing N, the number of points needed for computation from
2N2 to 2N logN. If the frequency is constant in time, FFT works
effectively [33]. However, in nonlinear ultrasonic testing, the objec-
tive is to find the complex nonstationary higher-order harmonic
signals, which potentially poses a challenge for FFT.

Moreover, some inherent characteristics of FFT affect the accu-
racy of signal decomposition. FFT uses global basis functions, and
any perturbations in the transient signal in the time domain can
dramatically affect the frequency spectrum [34]. Therefore, FFT is
less accurate to handle local discontinuity in the time-varying sig-
nal with transient properties [35]. To solve this problem, Dennis
Gabor introduced the STFT method to embed the temporal infor-
mation into the frequency-domain analysis [36]. In this method a
fixed length analysis window is introduced that slides through
the time axis and computes the time-localized Fourier transform
[37]. While the STFT approach is introduced to overcome the lim-
itation of FFT that the temporal information is excluded, in this
method, an implicit assumption is that the signal within the pro-
cessing frame is repetitive and that the signal can only be sampled
for a limited time [38]. In STFT, the time resolution can improve by
decreasing the window size to calculate FFT, but the frequency res-
olution is reduced when the FFT window has limited data points
[39]; thus STFT cannot provide good resolution in time and fre-
quency simultaneously [35,37,40]. In conclusion, FFT is ineffective
to decompose non-stationary transient signal accurately, and it is
important to apply a more robust signal decomposition approach
to extract the acoustic nonlinearity parameter.

3.2. Wavelet transform

In contrast to FFT, WT uses functions that are localized in both
real and Fourier spaces, called wavelets [41]. By reconstructing sig-
nals into the mother wavelets, wðtÞ, frequency components with
the window of each wavelet can be identified. As discussed before,
STFT requires a constant window length (called ‘window size’),
which slides through the time axis to calculate the FFT in each win-
dow and to add the temporal information of the signal into FFT
[37]. Unlike the STFT method, the window size in WT is not con-
stant, and it is a function of frequency. In higher-frequency compo-
nents, the window size becomes smaller to maintain higher
frequency resolution while in signals with lower frequency, higher
frequency resolution is obtained by a larger window size [40]. WT
has been successfully applied in obtaining time-frequency images
in both linear [42] and nonlinear [43] systems and other applica-
tions in signal/image processing and damage detection [41–46].
It has also been developed in the form of Discrete Wavelet
Transform, Fast Wavelet Transform, and Continuous Wavelet
Transform [47].

The fundamental equation of wavelet transform can be
expressed as:

wnðs; sÞ ¼
Z 1

�1
hðtÞw�

s;sdt ð8Þ

where hðtÞ is the time-domain signal, ð�Þ denotes the complex con-
jugate, and ws;s is called the daughter wavelet and can be character-
ized with the dilation and translation parameters, s and s,
respectively, as:

ws;sðtÞ ¼
1ffiffi
s

p w
t � s
s

� �
ð9Þ

The dilation and translation parameters, s and s, vary continu-
ously to represent different times in the time-domain signal and
different contractions and dilations of the mother wavelet. The
wavelet function should have zero mean and be localized in both
time and frequency [48]. Additionally, the mother wavelets wðtÞ
must satisfy the following admissibility condition:Z 1

�1

jŵðxÞj2
jxj dx < 1; ŵðxÞ ¼

Z
wðtÞe�ixtdt: ð10Þ

Among many wavelets, the Morlet wavelet has been shown to
have the best temporal and spatial resolutions [46]. In this study,
the complex Morlet wavelet obtained by the product of a complex
exponential and a Gaussian function is selected as the mother
wavelet. The exponential decay in complex Morlet results in very
precise time localization. This wavelet provides the best resolution
in time and frequency; therefore, it is the most suitable wavelet for
spectrogram analysis [49,50]. The complex Morlet wavelet has the
following forms in the time and frequency domains [51]:

wMðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
pxb

p ei2pxc te�
t2
xb ð11Þ

wMðxÞ ¼ ep
2xbðx�xcÞ2 ð12Þ

where xb and xc are the parameters controlling the frequency
bandwidth and the central frequency, respectively. Fig. 1 shows
the complex Morlet wavelet with the central frequency of 1.5 Hz
and bandwidth of 1 Hz.

3.3. Acoustic nonlinearity parameter obtained by WT-based method
and FFT-based method

Two wavelet-based schemes are introduced to obtain the
acoustic nonlinearity parameter; the accuracy of the proposed
schemes is demonstrated by comparison with the FFT results in
this section. Fig. 2 shows the schematic of the proposed schemes
to extract the amplitudes of the first and second harmonic frequen-
cies. The time-frequency spectrogram is first obtained with the
selected mother wavelet, after the time-history signal is recorded,
and then wavelet coefficients (amplitude) of the first and second
harmonics with respect to time, A1ðtiÞ and A2ðtiÞ, respectively, are
extracted. Here the subscript i denotes the i-th data point. In this
study, unless otherwise indicated, the time history signals consist
of 2048 discrete points. The first harmonic frequency occurs at
2.014 MHz, and the second harmonic frequency is twice the first
harmonic at 4.028 MHz, as shown in Fig. 2a. Two red1 lines in
Fig. 2b show the positions of first and second harmonics on the
wavelet spectrum. Once the two modes are decomposed, the acous-
tic nonlinearity parameter can be obtained by two different
th



Fig. 1. Complex Morlet with central frequency of 1.5 Hz and bandwidth of 1 Hz, (a) time domain (b) frequency domain.

Fig. 2. Schematic to obtain acoustic nonlinearity parameter b using WT.
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schemes: (1) time-dependent: bðtiÞ ¼ A2ðtiÞ
A2
1ðtiÞ

and (2) time-invariant:

b ¼ max jA2ðtiÞj
max jA1ðtiÞj2

. In the time-dependent algorithm, b varies with each
discrete point, ti, along the time history signal. The algorithm pro-
vides a detailed variation of b values with respect to time. However,
it may include undesired wave modes and noises and, moreover, it
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fails when A1ðtiÞ is close to zero. In the time-invariant algorithm, the
maximum amplitudes of A1ðtiÞ and A2ðtiÞ, within a period of time, are
selected for calculating a constant b value for each time history sig-
nal. In practice, for a long period of signal, the time-dependent algo-
rithm offers a whole spectrum of how b varies with time due to
different incidents. As for an isolated period of time of interest, the
time-invariant algorithm offers a more consistent b value for better
interpretation. More detailed discussions about the two algorithms
will be given in the following sections.

The acoustic nonlinearity parameter b is an inherent material
property and should not be dependent on the excitation amplitude
or frequency. However, if in the signal processing the errors from
the extraction of A1 and A2 are of the same order (see the discus-
sion in Section 2), the error of calculated b depends on the A2 value.
To verify the effectiveness of the wavelet-based schemes for calcu-
lating the acoustic nonlinearity parameter, the analytical solution
in Eq. (3) is employed as the input signal to completely remove
measurement errors. The values of material parameters used are
as follows (see Table 1).

The input signal uðx; tÞ is generated according to Eq. (3) with
various input amplitudes, u0, and a fundamental frequency of
Table 1
Material parameters.

A(Pa) B(Pa) C(Pa)

3.51 � 1011 1.444 � 1011 1.028 � 1011

Fig. 3. (a) Analytical nonlinear waveform of

(Analytical)

(a)

Fig. 4. A comparison of the acoustic nonlinearity parameter calculated with the signal pro
(� 10�6).
2 MHz. Fig. 3a–c shows uðx; tÞ for a given u0, its time-frequency
spectrogram from WT, and its frequency domain from FFT, respec-
tively. The variables to performWT are 100 MHz sampling rate and
the scale of 1000, whereas the parameters to calculate FFT are
100 MHz sampling rate, and 16384 data points. In this paper, the
complex Morlet with 1.5 Hz central frequencyxc and a bandwidth
xb of 1 Hz is implemented. The scale a in Eq. (13) is increased from
500 to 10k and the convergence in the spectrogram is reached at
the scale of 5000 or greater. The pseudo frequency Fa is 30 kHz
with a scale of 5000 and sampling frequency of 100 MHz [52].

Fa ¼ xc

ad
ð13Þ

Fig. 4 compares the calculated acoustic nonlinearity parameter
b from the wavelet-based scheme (maximum amplitude) with that
from the FFT. The acoustic nonlinearity parameter b is calculated
by reading A1 and A2 in the frequency domain (Fig. 3c) when FFT
is used, and it is calculated following the procedure in Fig. 2 when
the wavelet-based scheme is used. It can be seen in

Fig. 4 that the calculated acoustic nonlinearity parameter
depends on the signal amplitude in the FFT method while it is
q kg
m3

� �
k (Pa) l (Pa)

2700 51.05 � 109 26.32 � 109

longitudinal wave, (b) WT, and (c) FFT.

(Analytical)

(b) 

cessed by FFT andWT, (a) broad range of A1 (� 10�8to � 10�4) and (b) zoomed in A1



Table 2
Nominal chemical composition of aluminum 1100.

Aluminum 1100 Al Cu Mn P Si + Fe Zn Others

Weight% 99 min 0.05–0.2 0.05 max 0–0.03 0.95 max 0.1 max 0.15 total

Fig. 5. Tensile test sample dimensions (All dimensions are in mm).

Fig. 6. Stress-strain curves depicting the different strains applied to the tensile
specimens.

Fig. 7. Second phase volume fraction measurements for the four aluminum 1100
samples.
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almost invariant in theWTmethod. It is also noted that a jump in b
value occurs in the FFT result when A1 becomes smaller than A2.

4. Experimental results

In this section the experimental results on extracting the acous-
tic nonlinearity parameters from the samples with different levels
of plastic strain are presented using different signal processing
methods.

4.1. Materials preparation

Aluminum 1100 was used in this investigation with a composi-
tion shown in Table 2. Nine tensile specimens were machined from
a 6.3 mm (0.25 in.) thick cold rolled plate according to ASTM stan-
dard E8 to the dimensions shown in Fig. 5. All samples were stress
relieved at 250 �C for 15 min prior to tensile testing. An MTS tensile
machine, model 1125 was used for the tensile tests using a strain
rate of 2.54 mm/min. The first sample was tested to failure to
obtain the stress-strain curve and to determine the yield and ten-
sile strengths, as well as the Young’s Modulus and the strain at the
ultimate tensile stress (UTS), which are reported in Table 3. The
remaining samples were plastically deformed between 0.5% and
4% at 0.5% strain increments to produce different uniform plastic
strains through the strain gauge area to avoid non-uniform plastic
deformation at the onset of necking at the ultimate tensile strength
(UTS). Fig. 6 shows the stress-strain curves for all the samples
tested.

After tensile testing, the microstructures of four selected sam-
ples were examined by cross sectioning the specimens into small
pieces (6.0 � 6.0 � 5.0 mm3) from the middle of the gauge length.
The samples were prepared using standard metallographic proce-
dures and etched in a solution of 12 parts of hydrochloric acid,
six parts of Nitric acid, one part of hydrofluoric acid, and one part
of distilled water. The microstructure of the selected samples was
examined using light optical microscopy. Quantitative metallogra-
phy was conducted using ImageJ software [53] to measure the
population of intermetallics due to impurities, both in size and in
volume fraction. This measurement was conducted because it has
been reported in the literature [54] that in work-hardenable alu-
minum alloys the acoustic nonlinearity parameter is a function of
the second phase volume fraction. The volume fraction measure-
Table 3
Experimentally determined mechanical properties of aluminum 1100.

Yield stress 90 MPa
Ultimate Tensile Strength (UTS) 120.0 MPa
Strain at UTS 0.048
Young modulus 72.0 GPa
ments of the second phase particles are constant for all the test
specimens in our investigation (Fig. 7), and this eliminates the pos-
sible effect of second phase presence on the acoustic nonlinearity
parameter. Fig. 8 illustrates the sequential image steps followed
in the ImageJ software to calculate the volume fraction of the sec-
ond phase.
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4.2. Ultrasonic testing

There are two modes of ultrasonic testing: through-
transmission and pulse echo. Separate transducers are needed for
transmitting a signal to a structure and receiving the propagating
waves in the structure for the through-transmission mode. The
transmitting transducer is placed on one side of the structure,
and the receiving transducer is placed on the opposite side of the
structure. For the pulse-echo mode, the same transducer is used
as both transmitter and receiver. As nonlinear ultrasonic method
is based on detecting higher-harmonic signals, the through-
transmission mode should be selected for tuning the receiving
transducer to the higher harmonics of the transmitting transducer
(Fig. 9a and b). The schematic ultrasonic testing setup in through-
transmission mode is shown in Fig. 9b.

In order to provide a consistent coupling force and minimize the
coupling error as discussed by Liu et al. [55], a weighted grip
(24.5 N) was used to hold the transducers aligned to each other
(Fig. 9c). Light lubrication oil was used as the couplant between
the transducers and the test specimens (Fig. 9c). The experiments
were repeated three times with recoupling the ultrasonic trans-
ducers between each measurement to check the repeatability of
the results.

The transmitting and receiving transducers used in this study
are piezoelectric transducers manufactured by Olympus and have
effective diameter of 0.95 cm (0.375 in.) with the central frequen-
cies of 2.25 MHz (transmitter) and 5 MHz (receiver), and the cali-
bration curves shown in Fig. 9d.

The major inputs to the data acquisition of nonlinear ultrasonic
testing operating in through-transmission mode are input voltage,
excitation frequency, and cycles in harmonic loading. In this study,
the input signal was a 10-cycle 100-volt tone burst (i.e., harmonic
signal with 10 cycles as shown in Fig. 9b) at 2.25 MHz, which was
generated by the Pocket UT system manufactured by MISTRAS Inc.
The time-history signal of the 5 MHz receiver was recorded using
the same UT system with the sampling frequency of 100 MHz
Fig. 8. (a) Original micrograph of aluminum 1100, (b) and (c) imaging ste
and a band-pass filter of 1–20 MHz. To improve the signal to noise
ratio (SNR), twenty signals were averaged. The signal processing
was performed using MATLAB software. It is important to note that
the specimen thickness was smaller than the spatial length of 10-
cycle tone burst signal, which caused the interference of incident
and reflected waves. However, as the experimental conditions
were preserved for testing each sample, the change in the acoustic
nonlinearity parameter was correlated with the presence of plastic
deformation.

4.3. Nonlinear ultrasonic results using the FFT-based method

Once the aluminum specimens were loaded up to different
strain levels and released with different permanent plastic strains,
they were tested using longitudinal ultrasonic waves in a through-
transmission mode to correlate the plastic deformation with the
acoustic nonlinearity parameter. As discussed above, the acoustic
nonlinearity parameter depends on the amplitude ratio of the first
and second harmonic frequencies (Eq. (4)). An example of time-
domain and frequency-domain signals is shown in Fig. 10. The
waveform is obtained from the pristine, 2% strained, and 4%
strained samples and the amplitude of the second harmonic signal
(�1.5) near 4 MHz is significantly lower than the amplitude of the
first harmonic signal (�65) near 2 MHz.

It is observed that the amplitudes of harmonic frequencies
highly depend on the window selected in the time domain.
Fig. 11 shows the normalized acoustic nonlinearity parameter cal-
culated using the A1 and A2 amplitudes obtained by conducting FFT
by selecting different time windows. The gray dashed lines show
the window selected to compute the Fourier transform. As the
ultrasonic nonlinearity due to plastic deformation is weak, the
slight changes in the amplitudes of harmonic frequencies signifi-
cantly affect the result. As shown in Fig. 11, when the window is
selected as (a) 0–15 ms, the acoustic nonlinearity parameter
increases with the increase of plastic strain. However, when the
window is changed to (b) 0–9 ms, (c) 1.2–7.0 ms, or 2.0–5.5 ms, the
ps by ImageJ software to calculate volume fraction of second phase.



Fig. 9. Ultrasonic testing of aluminum specimens, (a) experimental setup, (b) schematic diagram, (c) ultrasonic transmitter and receiver in through-transmission mode, and
(d) transducer calibration curves.

Fig. 10. Typical time-domain waveforms and their frequency spectra for (a) pristine specimen, (b) 2% strain specimen, and (c) 4% strain specimen.
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Fig. 11. The variations in the acoustic nonlinearity parameter corresponding to time-domain windows calculated by FFT, (a) 0–15 ms, (b) 0–9 ms, (c) 1.2–7.0 ms and (d) 2.0–
5.5 ms.

Table 4
Acoustic nonlinearity parameter obtained by FFT.

Start time (ms) Finish time (ms) Acoustic nonlinearity parameter

Pristine 0.01 0.02 0.03 0.04

0 15 0.272 0.287 0.293 0.359 0.414
0 9 0.147 0.154 0.140 0.169 0.180
1 8 0.106 0.111 0.104 0.124 0.132
1.5 7.5 0.092 0.095 0.088 0.102 0.111
2 7 0.091 0.091 0.084 0.091 0.090
2.5 6.5 0.088 0.089 0.083 0.091 0.092
3 6 0.114 0.116 0.104 0.115 0.117

%change 109.193 113.293 128.937 139.126 155.042
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correlation between the ultrasonic nonlinearity parameter and the
plastic strain does not exist. Table 4 shows the values of the acous-
tic nonlinearity parameter obtained by different time windows.
The last row in Table 4 shows the maximum percentile variation
of the calculated nonlinearities for each specimen compared to
the mean value of the calculated nonlinearities of that specimen.
For the same data set, the acoustic nonlinearity parameter can
change more than 100% by varying the time window. Therefore,
identifying the acoustic nonlinearity parameter by FFT introduces
significant error in the measurement.

4.4. Nonlinear ultrasonic results using the WT-based method

Fig. 12 shows the time histories of wavelet coefficients for the
first and second harmonic frequencies for four different plastic
strains. In the first approach, the peak amplitudes are identified
without preserving the time information, and the acoustic nonlin-
earity parameters of samples with the induced plastic strains are
calculated. Fig. 13 shows the stress-strain curve for the aluminum
1100 specimen together with the normalized acoustic nonlinearity
parameter of each sample. As the thickness changes in different
plastic strain levels, the thickness of each sample was measured
and taken into account to calculate the acoustic nonlinearity
parameter. These coefficients are plotted as a function of strain
as shown in Fig. 13. It is observed that the acoustic nonlinearity
parameters exhibit stationary behavior up to 1% strain. A rapid
increase in the acoustic nonlinearity parameter occurs between
1% strain and 3.5% strain, but then saturation in the acoustic non-
linearity parameter ensues near 3.5% strain, which is close to the
necking point. The ultrasonic measurement was repeated three



Fig. 12. Fundamental and second harmonic waveforms extracted from the spectrograms corresponding to samples, (a) pristine, (b) 2% strained, (c) 3% strained, and (d) 4%
strained.

Fig. 13. Stress-strain and normalized nonlinearity-strain curves on two-scale plot.
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times for each sample. Each point in Fig. 13 represents the mean
value, and the corresponding error bar represents the range of vari-
ation in the three measurements. To show the trend of the exper-
imental results, the spline curve is fitted to the experimental data.
The interpolation method in the spline is piecewise-polynomial
interpolation that reduces the interpolation error compared to
polynomial interpolation [56].

The second approach to identify the acoustic nonlinearity
parameter using the time histories of wavelet coefficients for the
first and second harmonics is based on obtaining the wave envel-
opes at each frequency, and applying Eq. (4) to the entire time-
history data as shown in Fig. 14 for the pristine specimen. While
the peak amplitudes of each frequency component do not occur
at the same time, the acoustic nonlinearity parameter shows a con-
stant regime within the time interval 2.0–5.5 ms.
The same approach was repeated for the rest of the specimens
that underwent different levels of plastic strain as shown in
Fig. 15. In general, the time-dependent acoustic nonlinearity
parameter increases with the increase of plastic strain while some
fluctuations are observed in the data set.

All the acoustic nonlinearity parameters were averaged in the
time interval of 2.6–3.6 ms and plotted as a function of the amount
of strain as presented in Fig. 16, along with the stress-strain curve
for a pristine aluminum 1100 sample. The results of both wavelet-
based algorithms, time- invariant and time-dependent, link the
acoustic nonlinearity parameter and plastic strain in the material.
The acoustic nonlinearity parameter increases by 55% in the
time-invariant algorithm, and 45% in the time-dependent
algorithm.
5. Conclusions

The wavelet-based algorithms are introduced to obtain the
acoustic nonlinearity parameter b. The comparison between the
signal processing methods based on the FFT and the WT using an
analytical solution as the input signal shows that the calculated b
from the WT method agrees well with the analytical solution
regardless the input amplitude while the result from the FFT exhi-
bits strong dependence on the amplitude. The proposed wavelet-
based schemes are employed to investigate the change of acoustic
nonlinearity parameter b caused by plastic deformation, for the
purpose of validation. The accuracy of harmonic decomposition
of nonlinear wave signal due to plastic deformation is improved
by applying the proposed wavelet-based algorithms. Conse-
quently, a good correlation between the increase of the acoustic
nonlinearity parameter b and the increase in plastic deformation
is obtained in the nonlinear UT experiments. The developed signal
processing algorithm can enhance the minimum detectable
microstructural change in materials using nonlinear ultrasonics



Fig. 14. (a) Time-history waveform of the first harmonic, (b) time-history waveform of the second harmonic, and (c) change in acoustic nonlinearity parameter with time (for
pristine specimen).

Fig. 15. Change in acoustic nonlinearity parameter within time for different strain levels.

Fig. 16. Acoustic nonlinearity parameter obtained by preserving time information
in WT.
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in addition to plastic deformation studied in this paper such as
porosity, microstructural composition (such as ferrite content in
steel), fatigue damage, creep damage, and weld defects.
Acknowledgement

This research is based upon work supported by the National
Science Foundation (NSF) under award number CMMI 1463501
entitled ‘‘Assessing Microstructural Damage Using Nonlinear Ultra-
sonics and Multiscale Numerical Modeling”. Any opinions, findings
and conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views of
the NSF. We would like to acknowledge Dr. Daniel P. Bailey of
the UIC College of Engineering for his assistance in editing this
article.
Appendix A

Following Eqs. (1) and (2), the strain energy density function for
isotropic solids converts to:

W ¼ k
2
ðtrEÞ2 þ ltrE2 þ A

3
trE3 þ BtrEtrE2 þ C

2
ðtrEÞ3 þ . . . ð14Þ

where k and l are Lamé parameters and A, B and C are the Landau-
Lifshitz representation of third-order elastic constants (TOE) [57]. If
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only purely longitudinal motion is considered, equation of motion is
reduced to the following expression:

@2u
@t2

¼ c2l
@2u
@x2

g
@u
@x

� �
ð15Þ

where cl is the longitudinal wave speed and is related to material
properties by:

cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l
q0

s
ð16Þ

and

gðnÞ ¼ 1þ 3þ C111

q0c
2
l

� �
nþ 3þ 3C111 þ C1111

q0c
2
l

� �
n2

2!
þ . . . ð17Þ

where q0 is the density in the unreformed state and c111 and c1111
are the third order and fourth order elastic constants, respectively.
It has been shown in references that Eq. (15) can be solved along its
characteristics and it can be demonstrated that the wave speed in
the actual space is changed due to nonlinearity by the coefficient b0:

c þ v ¼ cl þ b0v ð18Þ
where c is the actual wave speed and m is the particle velocity. b0 in
turn, has the following relationship with TOE:

b0 ¼ � 3
2
þ C111

2q0c
2
l

� �
ð19Þ

where C111 ¼ 2Aþ 6Bþ 2C. For a given material, b0 is calculated
using Eq. (19) and inserted in Eq. (3), and then recalculated using
the amplitude ratio (Eq. (4)) by employing the WT or the FFT.
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